Isometry theorem for the Segal–Bargmann transform on a noncompact symmetric space of the complex type
نویسندگان
چکیده
We consider the Segal–Bargmann transform on a noncompact symmetric space of the complex type. We establish isometry and surjectivity theorems for the transform, in a form as parallel as possible to the results in the dual compact case. The isometry theorem involves integration over a tube of radius R in the complexification, followed by analytic continuation with respect to R. A cancellation of singularities allows the relevant integral to have a nonsingular extension to large R, even though the function being integrated has singularities.
منابع مشابه
Isometry Theorem for the Segal–bargmann Transform on Noncompact Symmetric Spaces of the Complex Type
We consider the Segal–Bargmann transform for a noncompact symmetric space of the complex type. We establish isometry and surjectivity theorems for the transform, in a form as parallel as possible to the results in the compact case. The isometry theorem involves integration over a tube of radius R in the complexification, followed by analytic continuation with respect to R. A cancellation of sin...
متن کاملThe Segal–bargmann Transform for Noncompact Symmetric Spaces of the Complex Type
We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...
متن کاملar X iv : q ua nt - p h / 04 09 11 8 v 1 17 S ep 2 00 4 THE SEGAL – BARGMANN TRANSFORM FOR NONCOMPACT SYMMETRIC SPACES OF THE COMPLEX TYPE
We consider the generalized Segal–Bargmann transform, defined in terms of the heat operator, for a noncompact symmetric space of the complex type. For radial functions, we show that the Segal–Bargmann transform is a unitary map onto a certain L space of meromorphic functions. For general functions, we give an inversion formula for the Segal–Bargmann transform, involving integration against an “...
متن کاملSegal–bargmann Transform for Compact Quotients
Abstract. Let G be a connected complex semisimple group, assumed to have trivial center, and let K be a maximal compact subgroup of G. Then G/K, with a fixed G-invariant Riemannian metric, is a Riemannian symmetric space of the complex type. Now let Γ be a discrete subgroup of G that acts freely and cocompactly on G/K. We consider the Segal–Bargmann transform, defined in terms of the heat equat...
متن کاملThe Segal–Bargmann Transform for Odd-Dimensional Hyperbolic Spaces
We develop isometry and inversion formulas for the Segal–Bargmann transform on odd-dimensional hyperbolic spaces that are as parallel as possible to the dual case of odd-dimensional spheres.
متن کامل